
8 Discrete Random Variables

Intuitively, to tell whether a random variable is discrete, we simply
consider the possible values of the random variable. If the random
variable can be limited to only a finite or countably infinite number
of possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for
a business contains 48 external lines. At a particular time, the
system is observed, and some of the lines are being used. Let the
random variable X denote the number of lines in use. Then, X
can assume any of the integer values 0 through 48. [15, Ex 3-1]

Definition 8.2. A random variable X is said to be a discrete
random variable if there exists a countable number of distinct
real numbers xk such that∑

k

P [X = xk] = 1. (13)

In other words, X is a discrete random variable if and only if X
has a countable support.

Example 8.3. For the random variable N in Example 7.8 (Three
Coin Tosses),

For the random variable S in Example 7.9 (Sum of Two Dice),

Example 8.4. Toss a coin until you get a H. Let N be the number
of times that you have to toss the coin.

Example 8.5. Measure the current room temperature.
The possible values are any real numbers between 273.15 to

≈ 1.417×1032 ◦C. Any interval of positive length has uncountably
many members in it. So, this random variable is not discrete.
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8.6. Although the support SX of a random variable X is defined as
any set S such that P [X ∈ S] = 1. For discrete random variable,
SX is usually set to be {x : P [X = x] > 0}, the set of all “possible
values” of X.

Definition 8.7. An integer-valued random variable is a dis-
crete random variable whose xk in (13) above are all integers.

8.8. Recall, from 7.21, that the probability distribution of a
random variable X is a description of the probabilities associated
with X. For a discrete random variable, the distribution can be
described by just a list of all its possible values (x1, x2, x3, . . .) along
with the probability of each:

(P [X = x1] , P [X = x2] , P [X = x3] , . . . , ) .

In many cases, it is convenient to express the probability in the
form of a formula. This is especially useful when dealing with a
random variable that has infinite support. It would be tedious to
list all the possible values and the corresponding probabilities.

8.1 PMF: Probability Mass Function

Definition 8.9. When X is a discrete random variable satisfying
(13), we define its probability mass function (pmf) by32

pX(x) = P [X = x].

• Sometimes, when we only deal with one random variable or
when it is clear which random variable the pmf is associated
with, we write p(x) or px instead of pX(x).

• The argument (x) of a pmf ranges over all real numbers.
Hence, the pmf is (and should be) defined for x that is not
among the xk in (13) as well. In such case, the pmf is simply
0. This is usually expressed as “pX(x) = 0, otherwise” when
we specify a pmf for a particular random variable.

32Many references (including [15] and MATLAB) does not distinguish the pmf from another
function called the probability density function (pdf). These references use the function fX(x)
to represent both pmf and pdf. We will NOT use fX(x) for pmf. Later, we will define fX(x)
as a probability density function which will be used primarily for another type of random
variable (continuous RV).
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• The pmf of a discrete random variable X is usually referred
to as its distribution .

Example 8.10. Continue from Example 7.8. N is the number of
heads in a sequence of three coin tosses.

8.11. Graphical Description of the Probability Distribution: Tra-
ditionally, we use stem plot to visualize pX . To do this, we graph
a pmf by marking on the horizontal axis each value with nonzero
probability and drawing a vertical bar with length proportional to
the probability.

8.12. Any pmf p(·) satisfies two properties:

(a) p(·) ≥ 0

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x.

When you are asked to verify that a function is a pmf, check these
two properties.

8.13. Finding probability from pmf: for “any” subset B of R, we
can find

P [X ∈ B] =
∑
xk∈B

P [X = xk] =
∑
xk∈B

pX(xk).

In particular, for integer-valued random variables,

P [X ∈ B] =
∑
k∈B

P [X = k] =
∑
k∈B

pX(k).
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8.14. Steps to find probability of the form P [some condition(s) on X]
when the pmf pX(x) is known.

(a) Find the support of X.

(b) Consider only the x inside the support. Find all values of x
that satisfy the condition(s).

(c) Evaluate the pmf at x found in the previous step.

(d) Add the pmf values from the previous step.

Example 8.15. Back to Example 7.7 where we roll one dice.
 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

      11 2 6
6

P X P X P X      

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 
variable

 Probability mass function 
(PMF):

 In general,

 Stem plot:

  1/ 6, 1,2,3,4,5,6,
0, otherwise.X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 

Suppose we want to find P [X > 4].

1

Steps For this example…

Find the support of X. The support of X is {1,2,3,4,5,6}.

Consider only the x inside the support. 
Find all values of x that satisfy the 
condition(s).

The members which satisfies the condition 
“>4” is 5 and 6.

Evaluate the pmf at x found in the previous 
step.

The pmf values at 5 and 6 are all 1/6.

Add the pmf values from the previous step. Adding the pmf values gives 2/6 = 1/3.
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Example 8.16. Consider a RVX whose pX (x) =


1/2, x = 1,
1/4, x = 2,
1/8, x ∈ {3, 4} ,
0, otherwise.

1/2

1   2   3   4
x

1/4
1/8

stem plot:
   

       

12 2
4

1 2 3 4
1 1 1 1
4 8 8 2

X

X X X

P X p

P X p p p

  

   

   

Example 8.17. Suppose a random variable X has pmf

pX (x) =

{ c/x, x = 1, 2, 3,
0, otherwise.

(a) The value of the constant c is

(b) Sketch its pmf

(c) P [X = 1]

(d) P [X ≥ 2]

(e) P [X > 3]
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8.18. Any function p(·) on R which satisfies

(a) p(·) ≥ 0, and

(b) there exists numbers x1, x2, x3, . . . such that
∑

k p(xk) = 1 and
p(x) = 0 for other x

is a pmf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.19. The (cumulative) distribution function (cdf )
of a random variable X is the function FX(x) defined by

FX (x) = P [X ≤ x] .

• The argument (x) of a cdf ranges over all real numbers.

• From its definition, we know that 0 ≤ FX ≤ 1.

• Think of it as a function that collects the “probability mass”
from −∞ up to the point x.

8.20. From pmf to cdf: In general, for any discrete random vari-
able with possible values x1, x2, . . ., the cdf of X is given by

FX(x) = P [X ≤ x] =
∑
xk≤x

pX(xk).

Example 8.21. Continue from Examples 7.8, 7.12, and 8.10 where
N is defined as the number of heads in a sequence of three coin
tosses. We have

pN(0) = pN(3) =
1

8
and pN(1) = pN(2) =

3

8
.

(a) FN(0)

(b) FN(1.5)
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(c) Sketch of cdf

8.22. Facts:

• For any discrete r.v. X, FX is a right-continuous, staircase
function of x with jumps at a countable set of points xk.

• When you are given the cdf of a discrete random variable, you
can derive its pmf from the locations and sizes of the jumps.
If a jump happens at x = c, then pX(c) is the same as the
amount of jump at c. At the location x where there is no
jump, pX(x) = 0.

Example 8.23. Consider a discrete random variable X whose cdf
FX(x) is shown in Figure 19. 3-3 CUMULATIVE DISTRIBUTION FUNCTIONS 73
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Figure 3-3 Cumulative distribution function for
Example 3-7.

Figure 3-4 Cumulative distribution
function for Example 3-8.
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3-32. Determine the cumulative distribution function of the
random variable in Exercise 3-14.

3-33. Determine the cumulative distribution function for
the random variable in Exercise 3-15; also determine the fol-
lowing probabilities:
(a) (b)
(c) (d)

3-34. Determine the cumulative distribution function for the
random variable in Exercise 3-16; also determine the following
probabilities:
(a) (b)
(c) (d)

3-35. Determine the cumulative distribution function for
the random variable in Exercise 3-21.

3-36. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-37. Determine the cumulative distribution function for
the random variable in Exercise 3-23.

3-38. Determine the cumulative distribution function for
the variable in Exercise 3-24.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-39.

(a) (b)
(c) (d)

3-40. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

F1x2 � μ

0 x � 1
0.7 1 � x � 4
0.9 4 � x � 7
1 7 � x

P1X � 22P11 � X � 22
P1X � 22P1X � 32

F1x2 � •
0 x � 1
0.5 1 � x � 3
1 3 � x

P11 � X � 22P1X � 22
P1X � 32P1X � 1.52

P1X � 02P1�1.1 � X � 12
P1X � 2.22P1X � 1.252

Determine each of the following probabilities:
(a) (b)
(c) (d)
(e)

3-41.

(a) (b)
(c) (d)
(e) (f)

3-42. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

Determine the following probabilities:
(a) (b)
(c) (d)
(e)

3-43. Determine the cumulative distribution function for
the random variable in Exercise 3-28.

3-44. Determine the cumulative distribution function for
the random variable in Exercise 3-29.

3-45. Determine the cumulative distribution function for
the random variable in Exercise 3-30.

3-46. Determine the cumulative distribution function for
the random variable in Exercise 3-31.

P1X � 1�22
P1X � 1�42P1X � 5�162
P1X � 1�42P1X � 1�182

F1x2 � μ

0 x � 1�8
0.2 1�8 � x � 1�4
0.9 1�4 � x � 3�8
1 3�8 � x

P1�10 � X � 102P10 � X � 102
P1X � 02P140 � X � 602
P1X � 402P1X � 502

F1x2 � μ

0 x � �10
0.25 �10 � x � 30
0.75 30 � x � 50
1 50 � x

P1X � 22
P1X � 42P1X � 52
P1X � 72P1X � 42

EXERCISES FOR SECTION 3-3

JWCL232_c03_066-106.qxd  1/7/10  10:58 AM  Page 73

Figure 19: CDF for Example 8.23

Determine the pmf pX(x).
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8.24. Characterizing33 properties of cdf:

CDF1 FX is non-decreasing (monotone increasing)

CDF2 FX is right-continuous (continuous from the right)

  x    0P X x   

   countable set C,   0XP C   

 
XF  is continuous 

25) Every random variable can be written as a sum of a discrete random variable and a 

continuous random variable. 

26) A random variable can have at most countably many point x such that

  0P X x  . 

27) The (cumulative) distribution function (cdf)  induced by a probability P on 

 ,

  is the function    ,F x P x  . 

The (cumulative) distribution function (cdf) of the random variable X is the 

function      ,X

XF x P x P X x    . 

 The distribution 
XP  can be obtained from the distribution function by setting 

   ,X

XP x F x  ; that is
XF  uniquely determines 

XP . 

 0 1XF   

 
XF  is non-decreasing 

 
XF  is right continuous:  

x           lim limX X X X
y x y x
y x

F x F y F y F x P X x




    


. 

 

  lim 0X
x

F x


  and  lim 1X
x

F x


 . 

 x          lim lim ,X

X X X
y x y x
y x

F x F y F y P x P X x




     


. 

        XP X x P x F x F x     = the jump or saltus in F at x. 

   x y  

      ,P x y F y F x   

      ,P x y F y F x   

 

Figure 20: Right-continuous function at jump point

CDF3 lim
x→−∞

FX (x) = 0 and lim
x→∞

FX (x) = 1.

8.25. For discrete random variable, the cdf FX can be written as

FX(x) =
∑
xk

pX(xk)u(x− xk),

where u(x) = 1[0,∞)(x) is the unit step function.

33These properties hold for any type of random variables. Moreover, for any function F
that satisfies these three properties, there exists a random variable X whose CDF is F .
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